IR rywy @

LABORATORY FOR @)@k MASSACHUSETTS
COMPUTER SCIENCE 15 T

M T} INSTITUTE OF
TECHNOLOGY

MITALCS/TM-417

SYNTHESIS OF EFFICIENT
DRINKING PHILOSOPHERS |
ALGORITHMS

AD-A216 390

Jennifer L. Welch
Nancy A. Lynch

543 TéCHNOLOGY SQUARE. CAMBR!DGE. MASSACHUSETTS 02139
a 00 01 03 0590

Unclassified
CASSFICATION OF THES PAGT

REPORT DOCUMENTATION P2GE

12, REPORT SECURITY CLASSIFICATION 10 RESTAICTIVE MARKINGS

g?““" ified
28, SECUNTY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release; discribution

2b. DECLASSIFICATION / DOWNGRADING SCHEOULE is unlimiced,

4, PERFORMING ORGANIZATION REPQRT NUMBER(S) $. MONITORING ORGANIZATION REPORT NUMBEA(S)
N0OO014-83-0125
MIT/LCS/TM-417 NOOO14-85-0168
| 62, NAME OF PERFORMING ORGANIZATION b, ;ﬂ”nct sm:?L 73, NAME OF MONITORING ORGANIZATION
MIT Lab for Computer Science Office of Naval Research/Dept. of Yavy
6¢,- ADORESS (City, State, and 2% Code) 76. AQORESS (City, State, and 21 Code)
545 Technology Square Information Systems Program
Cambridge, Ma 02139 Arlington, VA 22217
‘32, NAME OF BUNOING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMSER
ORGANIZATION (i applicable)
DARPA/DOD
8. ADOAESS (City, State, and 2 Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJCT TASK WORK UNIT

ELEMENT NO. | NO. NO ACCESSION NO.
Arlingeron, VA 22217

J1 NTUE nciude Security Clasufication)

Synthesis of Efficient Drinking Philosophers Algurithms

”'G‘.ic’i‘\,‘ﬁkﬁ“f’g’r A.; Lynch, Nancy A.

J-13a. TYPE OF REPORT 13b. TIME COVERED 14, DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
L. Technical FROM 10 1989 November 46

E———————

|16, suppLEMENTARY NOTATION

! K12 COSATI CODES 18. SUBIECT TERMS (Continue on reverse if necessary and identify by biock number)

“FIELD GROUP SUS-GROUP dining philosophers, distributed algorithms, dvinking

philosophers, modularity, resource allocation,

— time complexity

B —

-19. ABSTRACT (Continue on reverse if necessary and identify by dlock number) i T
Abstract: A variant of the drinking philosophers algorithm of Cliand, and \I:sx’h .
is described and proved correct in a modular way, using the I/O a}xtoma'bon model iy)
of Lynch and Tuttle. The algorithm of Chandy and Misra is basec{cm*a partitular vt S :
dining philosophers algorithim, and relies on certain properties of iits :mplementa-k g
tion. The drinking philosophers algorithm presented in this papr s able to ‘Q‘Eéy-. oo '
an arbitrary dining philosophers algorithm as a true subroutme! nothing aboutt, . +

the implementation needs to be known, only that it solves the dinjng philosophers
problem. An important advantage of this modularity is that by substxtutmg a
more time-efficient dining philosophers algorithm than the one used by Chandy .

. . . ™~
J 20- DISTRIBUTIONTAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION !
‘[uncassirieounumiteo O same As ReT [J pric usERs Unclassified
| 22a. NAME OF RESPONSIBLE INDIVIDUAL 22h TELEPHONE (Include Area Cade) | 22¢. OFFICE SYMBOL
Judv Litctle (617) 253-5894
R
DD FORM 1473, 3amar 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All nther editions are obsolete R Ottios: 1088-807.047

Unc13351f1ed

N\ 1N, . =

ane’ Misea, a drinking philosophers algorithin with O(1) worst-case waiting time is
obtained, whereas the drinking philoscphers alyorithm of Chandy and Misra has
O(n) worst-case waiting time (for n philosophers). Formal definitions are given to
distinguish the drinking and dining philosophers problems and to specify precica

varying degrees of concurrency. (¢y,)

Acoessien Yor

DIIC TAB

yé
NTIS GRAAI [d
(]
Unannounced a

By ~
Patridution/

Availabi}ity Cedes

,lAuu and/or
Dist ! Spesial

A
R

- Pr——

e

e

Synthesis of Efficient Drinking Philosophers Algorithms

Jennifer L. Welch
University of North Carolina
Chapel Hill, NC 273990

Nancy A. Lynch
MIT Laboratory for Computer Science
Cambridge, MA 02139

This work was supported in part by the Advinced Research Projects Agency of the
Department of Defense under Contract N00014-83-K-0125, the National Science
Foundation under Grants DCR-83-02391 and CCR-86-11442, the Office of Army
Research under Contract DAAG29-84-K-0058, and the Office of Naval Research
under contract NG0014-85-X-01G8.

Abstract: A variant of the drinking philosophers algovithn of Chandy and Misra
is described and proved correct in a modulnr way, using the I/0 automaton model
of Lynch and Tuttle. The algorithm of Chindy and Misra is based on a particular
dining philosophers algorithm, and relies on certain properties of its implementa-
tion. The drinking philosophers algorithin presented in this paper is able to use
an arbitrary dining philosophers algorithui &~ a true subroutine; nching about
the implementation needs to be known, only that. it solves the dining philosophers
problem. An important advantage of this modulmity is that by substituting a
more time-efficient dining philosophers algorithm than the one usesd by Chandy
and Misra, a drinking philosophers algoviihin witli O(1) worst-case waiting time is
obtained, whereas the drinking philosophers algorithm of Chandy and Misra has
O(n) worst-case waiting time (for n philosophers). Fo. nal definitions ave given to
distinguish the drinking and dining philosophers problems aad to specify precisely
vo Jing degrees of concurrency,

Key words: dining philosophers, distributed algorithms, dvinking philosophers,
modlularity, resource allocation, time complexity.

1. Introduction

We present a modular description and proof of correctness for an algorithm to
solve the drinking philosophers problem in a message-passing distributed system,
Our algorithm uses an arbitrary solution to the dining philosophers problem as a
subroutine; by using a time-cfficient subroutine, one can obtain a drinking philoso-
phers algorithm with O(1) worst-ease waiting time. Formal definitions are given to
distinguish the drinking and dining philosophers problems and to specify precisely
varying degrees of concurrency.

The drinking philosophers problem is o dynamic variant due to Chandy and
Misra (1984) of the dining philosophers problem, a much-studied resource alloca-
tion problemi. In the original dining philosophers problem of Dijkstra (1971), five
philosophers (processes) are arvranged in u ring with one fork (resource) between
each pair of neighbors, and in order to eat {do work), a philosopher must have ex-
clusive access to both of its adjacent forks. A more general version of the problem
. allows any number of processes and puts no restrictions on which processes share
resources. In the drinking philosophers problem, for eacl* process there is a maxi-
mum set of resources that it can request. and each time a process wishes to do some
work, it may request an arbitrary subsct of its maximumn set.

2

Our drinking philosophers algorithm is u variant of the one of Chandy and Misra
(1984). Their algorithm is bused on a particular dining philosophers algorithm, and
relies on certuin properties of its implementation. Qur drinking philosophers algo-
rithm is able to use an arbitrary dining philosophers algorithm as a true subroutine;
nothing about the implementation needs to he kuown, only that it solves the dining
philosephiers problem. We show that in &t system of o philosophers the maximum
waiting time for a drinking philosopher to enter its evitical region is voughly equal to
the maximum waiting time for a dining philosopher to enter its critical region in the
subroutine. Thus, by replacing the diniug philosophers algorithmn of Chandy and
Misra (1984), which has waiting time O(n). with a dining philosophers algorithn
such as the one of Lynch (1981), which hins waiting time O(1), we obtain a more
cfficient drinking philosophers algovitlau,

We provide definitions that distinguish the drinking and dining philosophers
problem, and that specify precisely varving degrees of conenrrency. We use the
model of Lynch ard Tuttle (1987), which is useful for stating properties that concern
the infinite behavior of a system, such as no-deadlock and no-lockout, and which
supports modular algorithm design anel verifieation, This model, together with the
particular definitions developed in this puper for expressing the safety and liveness
properties for resource allocation problems, make possible a clear and precise proof
of correctness for our construction,

In Section 2, the dining philosophiers and drinking philosophicrs problems are
defined. In Section 3, we describe our algorithim, as an antomaton. Section 4
contains the proof of correctness of our algorithm, and Scction 5 analyzes the per-
formance of our algorithm with respect to various complexity measures. Section 6
contains our conclusions.

2. Problem Statement

There are n user processes in the system being modeled, and at various times,
each one nceds some of the system resources. Only one user at a time may have
access to any one resource. Each user’s states are partitioned into four regions. In
its trying region, the user is vying for access to its required resources. Once the
resources arc obtained, the user may enter its eritical region. When the user is
through with the resources, it enters its exit region, which usually involves some
“cleaning up” activities. Otherwise, the user is in its remainder region. The user
cycles through these four regions.

A resource allocation algoritlun decides which user gets which resources at
which time; thus, it supplies the code for the trying and exit regions. A distributed
resource allocation algorithm consists of one component for each user; the compo-
nents communicate with eaclt other by message passing.

We define two resource allocation problems, dining philosophers and drinking
philosophers, as external schedule modules, that is, as sets of allowable interactions
between inputs and outputs. (See Appendix A for a summary of the I/0 automaton
model of Lynch and Tuttle {1987).) We imagine an antomaton that, given input
from some number of users informing the antomaton of their desire to gain or
give up a set U of resources (with input. wetions T;(U) and Ei(U) for each user 1),
decides which users are allowed to enter their critical and remainder regions at which
times (with output actions C;(U7) and R;(I7)). The antomaton, then, represents the
algorithm used to allocate the resources.

In the dining philosophers problem. each nser {or philosopher) always requests
the same set of resources. In the drinking philosophers problem, each user can
request a different set of resources cach time it enters its trying region.

We consider several versions of the dining and drinking philosopliers problems,
each satisfying successively stronger liveness properties. First we define the basic
dining and drinking philosophers problems, which only satisfy safety conditions.
Then the no-deadlock versions are defined, in which as long as some user is in
its trying region, eventually some user enters its critical region. In the no-lockeut
versions, any user that caters its trying region eventually enters its critical region.
The no-deadlock and no-lockout conditions assume that no user keeps resources
forever.

A dining philosophers algoritlin can be used to solve the drinking philosophers
problem by treating each resource request as o request for the entive set of resources
which that user will ever nced. However. nsers may be blocked unnecessarily in
such a scheme. A preferable solution would not rule out two users that sharve a
resource from entering their critical regions shmultancously, if their current resource
requirements are disjoint. We capture part of this intuition by defining the “more-
concurrent” condition for the drinking philosophers problein — if a user requests a
set of resources, none of which is currently being sought or used by anovher user,
then the first user eventually enters its critical region, even if some other resources
are never relinquished. (In owr conclusions we discuss even stronger forms of the
drinking philosophers problem.)

Let S be a finite non-empty set of resources. Define an n-user resource require-
ment to be a collection of n sets S5, 1 €7 < n, such that each $; is a non-empty
subset of S, and no resource is in more thin two S;'s. The last restriction mnkes
the algorithm much simpler to describe mud veason about, but is not substantial.
If a resource is shared by k users, then it can be vepresented by & choose 2 virtual
resources, onc shared between cach pair of the original & users; to gain the “real®
resource, a user must gain the & = 1 virtual resources shared with it.

In the context of the dining philosuphers problem, resources will be referred
to as forks; in the context of the drinking philosophers problem, resources will be
referred to as bottles.

2.1 Dining Philosophers

Fix an n-user fork requirement F = {F; : 1 <1 £ n}. The following definitions
are all made relative to this fork requirement.

For each i, let the sct {T;, C;, E;, R;} be denoted F-TCER;. (The letter F
stands for “fork.") T; is the action by which user i enters its trying region, desiring
the resources F;, and analegously for the other actions and regions. Since cach user
i must request the same set F; of forks each time, we do not explicitly include the
sct of forks in the action names. Let F-TCER = |Ji,,, F-TCER;.

In order to specify the external schedule module for the dining philosophers
problem, we define the following predicates on any sequence a. (Throughout this
paper, Greek letters stand for sequences from a set, and Roman letters for single
clements.) If « is & sequence from a set $ und T is a subset of S, then T is defined
to be the subsequence of « consisting of elements in T,

o « is dining-well-formed if for all i, the subsequence of « restricted to F-TCER;
conforms to the pattern T;C;E;R;....

o a satisfies (REL-F) if for all i, if «|F-T'CER; is finite, then «|F-TCER; does
not end in C;. (REL-F) states that every user eventually releases the resources
it is granted, by leaving its critical region.

¢ asatisfies (EX-F)ifforalliand j, i # j,if a = 3,Cif2C;Bs and if F;NF; £ @,
then B, contains E;. (EX-F) states that cach user has exclusive access to a
needed resource when it is in its critical region.

0

o o satisfies (ND-F) if for all 4, if o|F-TCER is finite, then «|F-TCER; cnds
in R; or is empty. (ND-F) states that the systemn is not deadlocked, i.c., that
users stop taking steps only if they are all in their remainder regions.

o « satisfies (NL-F)if for all i, if a|F- TCER, is finite, then o| F-TCER; ends in
R; or is empty. (NL-F) states that the system has no-lockout, i.e., that any
individual user stops taking steps only if it is in its remainder region.

The dining philosophers problem for F is the external schedule module DiPh
such that:

e in(DiPh) = {T,,E; : 1 £i S u},

o out(DiPh) = {Ci,Ri: 1 <i <n},

o DiPh preserves dining-well-focmedness (see Appendix A for the definition of
“preserves”), and

o scheds(DiPh) is the sct of all sequences o of actions satisfying the following
implication:
Exclusion: If o is dining-well-formexl, then a satisfies (EX-F).

The exclusion implication states that if the schedule is dining-well-formed, then
no two users arc in their critical regions at the same time with the same resource.

The no-deadlock dining philosophers problem for F is the external schedule
module that is the same as the dining philosopliers problem except that in addition
to the exclusion implication, schedules must satisfy the following implication:

No-deadlock: If « is dining-well-formed and o satisfics (REL-F), then o satisfies
(ND-F).

The no-deadlock implication states that if the schedule is dining-well-formed and no
user keeps resources forever (by staying in its critical vegion forever), then eventually
some user will enter its critical region.

The no-lockout dining philosophers problem for F is the external schedule mod-
ule that is the same as the dining philosophers problem except that in addition to
the exclusion implication, schedules must. satisfy the following implication:

No-lockout: If « is dining-well-formed and a satisfies (REL-F), then o satisfies
(NL-F).

The no-lockout implication states that if the schedule is dining-well-formed and no
user keeps resources forever (by staying in its critical region forever), then eventually
every user that wishes will enter its critical region.

2.2 Drinking Philosophers

Fix an n-user bottle vequivement & = {JI}; : 1 £ i £ n}. The following
definitions ave made relative to this hottle requivement; most. are analogous to
those in Section 3.1. Two new conditions, (NS-B), and (NOV.B);, both indexed by
user id 7, are used to create implications to distinguish the drinking philosophers

problem from the dining philosophers problew, as will be discussed,

For each i, let the set {Ti(D),Ci(B). E{(B).Ri(B) : B C D; and B # @} be
denoted B-TCER;. (The letter B stands for “bottles.”) Lev B-TCER = U, B-
TCER;. The following predicates wre defined for any sequence a.

o «is drinking-well-formed if for all i, the subsequence of o vestricted to B-TCER;
conforms to the pattern T;(B)C;(B)E;(B R:(B)T(B")C:(B')E;(B")Ri(B').. ..

o o sutisfies (REL-B) if for all i, if o|D-TCER; is finite, then of B-TCER; does
not end in C;(B) for any B, (REL-B) stutes that every user eventually releases
all resources that it is granted, by leaving its critical region.

o o satisfies (EX-B) if for all i and j. i # j, if a = 31 Ci(B)B2C;(B')f; and
if B(1B' # 0, then 8, contnins E(DB). (EX-B) states that cvery user has
exclusive access to needed resources when it is in its critical region.

o o satisfics (ND-B)if for all i, if a|B-TCER is finite, then a|B-TCER; ends in
R;(B) for some B or is cmpty. (ND-B) states that the system is not deadlocked,
i.c., that users stop taking steps only if all usexs are in their remainder regions.

o « satisfies (NL-B) if for all 1, if «|B-T'CER; is finite, then a|F-TCER; ends in
R;(B) for some B or is empty. (NL-B) states that the system has no-lockout,
i.c., that any particular user stops taking steps only if it is in its remainder
region.

The drinking philosophers problem for 8 is the external schedule module DrPh
such that:
in(DrPh) = {T{(B),Bi(B): 1 <i < u,BC B, and B # #},
oul(DrPh) = {Ci(B),Ri(B):1<i<n.BCB; and B # 0},
DrPh preserves drinking-well-formeduess, and
scheds(DrPh) is the set of all sequences a of actions satisfying the following
implication:
Exclusion: If « is drinking-well-formed. then o satisfies (EX-B).

-]

The no-deadlock drinking philosophers problem for B is the external schedule
module that is the same as the drinking philosoplicrs problen: except that in addition
to the exclusion implication, schedules st satisfy the following implication:

No-deadlock: If a is drinking-well-formed and o satisfiess (REL-B), then o satisfics
(ND-B).

The no-lockout drinking philosophers problem for B is the external schedule
module that is the snme as the drinking philosophers problen except that in addition
to the exclusion implication, schedules must satisfy the following implication:

No-lockout: If o is drinking-well-formed and o satisfies (REL-B), then o satisfies
(NL-B).

The next two predicates are introduced to create an implication that will dis-
tinguish between the drinking and dining philosophers problews.

(1) if « = A/T(B)ST;(B')3, then f; coutains Ci(B); and (2) if « =
B\T;(B')B.T;(B)Bs, then By contains E;(B'). (NOV-B); (NQV for “no over-
lap") states that whenever user i requests i resource, (1) no other user requests
that resource until after user i enters its critical region, and (2) any other user
that has previously requested that resource has alrendy released it.

e (NOV-B); (1 £ i £ n) For all j and any 5 and B' with BN B' £ ¢

o (NS-B); (1 £1i £ n) If «|B-TCER; is finite, then a|B-TCER; does not end in
Ti(B) or E{(B) for any B. (NS-B), (NS for “not stuck”) states that user i is
never stuck in its trying or exit regions.

The next problem statement vequives a degree of concurrency in the drink-
ing philosophers problem, concerning users being simultancously in their critical
regions, that cannot be obtained with a dining philosophers algorithm,

The more-concurrent drinking philosophers problem for B is the external sched-
ule module that is the same as the drinking philosophers problem except that in
addition to the exclusion implication. sehedules must satisfy the following n impli-
cations:

More concurrent for i, 1 <7 < n: If o is drinking-well-formed and satisfies (NOQV-
B);, then « satisfies (NS-B),.

For each 1, the implication “more concurrent for i* states that as long as the
no-overlap condition is true for ¢, 7 will eventually enter its critical region, even if

)

some user j, with B; O\ B # 0, stays in itx critical region forever (of course, j must,
have only resources not needed by i), Thus, simply using a dining philosophers
algorithm for B would not satisfy this iplication, since user i would be stuck in
its trying region forever.

The no-lockout and more-concurrent drinking philosophers problems are in-
comparable in the sense that there is an algorith {or the first that does not solve
the second and vice-versa.

3. Drinking Philosophers Automaton

In this section we describe nn auntomuton Drink(5) to solve the drinking puiloso-
phers problem for the n-user bottle requivement B = {B; : 1 £ i € n}, in a
message-passing distributed system. 1t is created by composing several automata,
to be described, and then hiding most of thw uctions, in order for the external actions
to be consistent with the definition of the problem. The component automata are
D(i), for 1 £ i £ n, and any automaton Dine(B) that solves the dining philosophers
problem for B. D(i) represents the paxt of the drinking philosophers algorithm for
user i; Dine(B) is the subroutine. First we describe the algorithm informally, then
we present the D(i) automate, and then we define Drink(B).

When drinker i enters its trying region needing a certnin set of resources, it
sends requests for those that it needs but lncks. Recipient j of a request satisfies
the request unless j currently also wants the resource or is alveady using it. In the
Intter two cases, j defers the request and satisfies it once j is finished using the
resource.

In order to prevent drinkers from deadlocking, a dining philosophers algorithm
is used as a subroutine. The “resources™ numipulated by the dining subroutine
are priorities for the “real” resources (there is one dining resource for each drinking
resource). As soon as drinker ¢ is able to do so in its drinking trying region (without
violating dining-well-formedness), it enters its dining trying region, that is, it tries
to gain priority for all its adjacent resources. If i ever enters its dining critical region
while still in its drinl.ng trying region, it sends demands for needed bottles that are
still missing. A recipient j of a demand must satisfy it even if j wants the resource,
unless j is using the resource. In the latter case, j defers the request and satisfies
it when j is through using the resource.

Once drinker 7 is in its dining critical region, we can show that it eventually
receives all its needed resources and never gives them up. Then it may enter its

9

drinking critical region. When i enters its drinking critical region, it relinquishes
its dining critical region. The bencfits of haviug the priorities are no longer needed.
Doing so allows some extra concurrency: even if £ stays in its drinking critical region
forever, other drinkers needing other resources can continue to make progress.

A couple of points about the code deserve explanation. We can show that when
a request is received, the resource is always at the recipient; thus it is not necessary
for the recipient to check that it has the resource before satisfying or deferring the
request. However, it is poasible for old leftover demands to be in the system, so
hefore satisfying or deferring a demand, the recipient must check that it has the
resource.

Another point concerns when the actions of the dining subroutire should be
performed. Drinker i’s dining output actions are T; and E; and are enabled (using
Boolean flags) in such a way as to preserve dining-well-formedness. Some drinkers
could Ye locked out if drinker i never rclinguishes the dining critical region. To
avoid this situation, { cannot enter its drinking critical or remainder regions as long
as E; is enabled. The “airness assmmption about the underlying model ensures that
once E; is enabled eventually i enters its dining exit vegion, after which it may enter
the appropriate drinking region.

We now present the automaton D(i).
The set of possible messages is {req(h), sat(b),dem(b) : b € S}.

The state of D(i), 1 < i £ n, consists of values for the following variables:
drink-region(i), dine-region(t), deferred(i), bottles(i), req-bottles(i), duffi, ;) for all
j #1, do-T(i), and do-E(i). The region(i) varinbles take on the values T'. C, E and
R, and indicate which region the i** dining and i** drinking philosophers are in. The
deferred(i) variable is a set of pairs (b, 7). indicating that user j's request for bottle
b has been deferred at user i. The bottles(i) and req-bottles(i) variables are sets of
bottles, and indicate which bottles user / has and which it requires, respectively.
For each j # i, the variable buff{i,) is a FIFO queue of messages from D(i)
to send to D(j), and is manipulated with operations enqueue and dequeue. The
do-T'(2) and do-E(i) variables are Booleans and control when the output actions
T; and E; respectively are enabled. In the unique start state, the region(i)’s are
R; deferred(i), reg-bottles(i), and all the buff{i,j) ure empty; do-T(i) and do-E(i)
are false; and bottles() is an arbitrary subsct of B;. (We have actually defined a
class of automata D(i), with different start states, depending on the initial value of
bottles(i). Later, we will require consistency between the D(i)’s.)

10

The actions of D(i) me listed below, together with their preconditions and
cffects. (There are no internal actions.) First we define two macros, SAT and
DEFER. SAT sutisfics a request or demand from D(j) for bottle b by sending the
message sat(b) to D(j) and removing b from bottles(i) snd (b, 7) from deferred(i).
DEFER defers a request or demand from D(j) for hottle b, if b is currently required
by D(i), by adding (b,j) to deferred(i); if b is not currently required, then the
request or demand is satisfied.

SAT(i, b, j) == enqueve(bufRi, j).cat())
bottles(i) — bottles(i) — {b}
deferred(i) — deferred(i) — {(},j))

DEFER(i,b,j) == if b € reg-battles(i) then deferred(i) « deferred(i) U {(b, 7))
clse SAT(i, b, 5)

Input actions:

L4 Tl(B)‘ B C B;
Effect:
drink-region(i) — T
reg-bottles(:) — B
for all j # ¢ and b € req-bottles(i) N Bj:
if b ¢ bottles(i) then enquene(buffi,j),req(d))
if dine-region(i) = R then do-T(i) «~ true

¢ E(B), BC B;
Effect:
drink-region(i) — E
for all (b,7) € deferred(i): SAT(i.b,j)

o deliver(sat(b),j,i) forall j #£i, b€ B;NDB;
Effects:
bottles(i) + bottles(i) U {b}

o deliver(reg(b),j, i) for all j #1i,be B;n B;
Effects:
if drink-region(i) = T or drink-region(i) = C
then DEFER(i, b, j)
else SAT(i,b,5)

o deliver(dem(d), j,1) for all j # 4, b€ B;N B;

11

Effect:
if b € bottles(i) then
if drink-regica(i) = C ov (drink.region(i) = T & dine-region(i) = C)
then DEIER(i, b, })
else SAT(1,b,7)

o C;
Effect:
dine-region(i) ~ C'
if drink-region(i) = T then |
for all j # i and b € reg-botiles(i) NB,; : if b € dottleyi) then
enqueue(bufli, j), dem(d)))
else do-E(i) ~ true

] R,‘
Effect:
dine-region(i) v~ R
if drink-region(i) = T then do-T(i) « true

Output actions:

e Ci(B), B C B;

Precondition:
drink.region(i) =T
B = req-bottles(i) C bottles(i)
do-E(i) = false

Effect:
drink-region(i) ~ C
if dine-region(i) = C' then do-E(i) & true

e Ri(B), B C Bi
Precondition:
drink.region(i) = E
B = reg-bottles(i)
do-E(i) = false
Effect:
drink-region(i) +— R

e deliver(m,1,3) for all j i, m € {req(d), sat(h),dem(d) : b € B; N B;)
Precondition:

12

m is at head of buff{i, ;)
Effect:

dequene(bufli, 1))

o T;
Precondition:
do-T(i) = true
Effect:
dine-region(i) —~ T
do-T(i) « false

o E;
Precondition:
do-E(i) = true
Effect:
dine-region(i) — E
do-E(i) « false

The output actions of D(i) are partitioned into n classes, one for the deliv-
ery of messages in each buff(i,j), and one for all the other actions. Formally, the
subsets of the output actions are {Ci(B), Ri(B), T;, E; : B C B;}, and for each
j#1i, {deliver(m,i,j) : m = req(b), dem(b), or sat(b), b € B;n B;}. This partition
guarantees that messages are eventually delivered in fair executions, since the mes-
sage queues are FIFO. In essence, the buff viniables are modeling separate picces of
hardware, the communication links.

A set of automata {D(i) : 1 < i < n} is resource-compatible if for all ¢, and all
bin B;: bis in bottles(j) in the start state of D(j) for exactly one j. Let Dine(B)
be an automaton whose input actions are {T;, E; : 1 € i < n} and whose output
actions are {C;, R; : 1 < ¢ < n}. The automaton Drink(B) is formed by composing
a resource-ccmpatible set {D(i) : 1 < i < n}, and Dine(B), and then hiding all
actions except |Ji.., B-TCER;. Sce Figure 1.

4. Proof of Correctness

In Section 4.1, wa show that Drink{B) solves the drinking philosophers problem,
that is, the safety properties are true, regardless of the behavior of the Dine(B)
subroutine. Section 4.2 consists of the proof that Drink(B) solves the no-deadlock
(resp., no-lockout) drinking philosophers problem if the Dine(B) subrouiine solves
the no-deadlock (resp., no-lockout) dining philosophers problem. In Section 4.3

13

Dine(8))

C2

R2
Deliver(m,1,2)

Deliver(m,2,1)

T2(8)... C2(8)...

£2(B)... R2(8)...

Figure 1: Drink(B), a system of two drinking philosophers.

we show that Dine(B) solves the more-concurrent drinking philosophers problem if
the Dine(B) subroutine preserves dining-well-formedness. The proofs rely heavily
on invariants about the states of the automata. The proofs of the invariants are
relegated to Appendix B.

4.1 Drinking Philosophers

We show that Drink(B) solves the drinking philosophers problem, regardless of
the behavior of Dine(B). That is, we show that correct exclusion is maintained by
the algorithm, although no liveness properties are guaranteed. Three lemmas are
used in the proof of the main result, Theorem 4. Lemma 1 states some simple re-
lationships between states and actions in an execution, for example, drink-region(i)
and dine-.region(i) reflect the most recent drinking and dining actions at node i.
Lemma 2 asserts that Drink{B) preserves drinking-well-formedness. Lemma 3 con-
sists of several invariants needed to show the exclusion property.

Let buff{i,7)|b be the subsequence of buff{i,j) consisting exactly of sat(b),
req(b) and dem(b).

Lemma 1: Let e = spa;s; ... be an execution of Drink(B). Choose any i and m,
withl1 <i<nands, ine.

(a) Let k be the largest integer such that k < m and a; is in B-TCER;. (Let
k = O if there is no such a;.) If k = 0 or a = Ri(B), then drink-region(i) = R

14

in sm. If ax = Ty(R), then drink-region(i) = T in sm. If ax = Ci(B), then drink.
region(i) = C in 8. If ax = E;(B), then drink-region(i) = E in $,n.

(b) Let k be the Iargest integer such that k < m and ay = T{B) for any B. (Let
k = 0 if there is no such ar.) If k = O, then req-bottles(i) = 0 in sm; otherwise
reg-bottles(i) = B in 3.

(c) Let k be the Inrgest integer such that k € m and ay is in F-TCER;. (Let k=0
if there is no such ar.) If k = 0 or ax. = R;, then dine-region(i) = R in 8w, If
ax = T;, then dine-region(i) = T in sp. If ar. = C}, then dinc-region(i) = C in s,,.
If a). = E;, then dine-region(i) = E in sy.

(d) For all j # i, buff{i, j)|b is empty unless b is in B; 0 Bj, in 3.

(¢) If (b,7) is in deferred(i), then j # i and b is in B; N\ B;, for all b and j, in s,,.
Proof: By an easy induction on m, inspecting the code. (8]
Lemma 2: Drink{B) preserves drinking-well-forinedness.

Proof: Suppose « is a schedule of Drink{B), and Ba is a prefix of a such that g
is drinking-well-formed and a is a locally-controlled action of Drink(B). We show
that fa is drinking-well-formed.

Let ¢ be any execution of Drink{B) with schedule Ba; let s be the state of ¢
hetween 8 and a. There are two cases.

Case 1: a = C;(B) for some i and B. We must show that 8|B-T'CER; ends in
b = T;(B). By precondition of Ci(B), drink-region(i) = T and B = reg-bottles(i) in
3. By Lemma 1(a), b = T;(B') for some B', and by Lemma 1(b), B' = B.

Case 2: a = Ry(B) for some i and B. \We must show that 8|B-TCER; ends in
b = E;(B). By precondition of R;(B), drink-region(i) = E and B = reg-bottles(i)
in s. By Lemma 1(a), b = E;(B') for some B'. Since f is drinking-well-formed,
B|B-TCER; ends in T;(B')C;(B')E;(B'). By Lemma 1(b), B' = B. o

The following lemma states some invariants of the algorithm, that is, predicates
true in every reachable state of Drink{53). Rec.il that cach bottle is in at most two
By's.

Lemma 3: Let e be an execution of Drink(B) whose schedule is drinking-well-
formed. Then in every state of e, the followiug are true, for alli, j and b.

15

(A)Ifbisin Bi0B;, i # j, then exactly one of the following is true: b is in bottles(i),
or b is in bottles(), or sat(h) is in buffi, i), or sat(b) is in buff(j,i). If b is in B;
only, then b is in bottes{i).

(B) If (b,7) is in deferred(i), then
(a) b is in boltles(i),
(b) drink.region(j) = T. and
(c) b is in reg-bottles(7).

(C) If rey(b) is at the head of buffi, j)|b. then b is in bottles(5).

{D) If req(b) is in buffi,s), then
(a) at most one reg(b) is in buffi, 5).
(b) no sat(b) follows it in duffts,),
(c) (b,i) is not.in deferred(s),
(d) drink-region(i) = T,
(e) b is in req-bottles(s), and
(f) b is not in bottles(i).

(E) If sat(b) is in buff{i,). then
(a) at most one sat(b) is in duffi,),
(b) no dem(b) immediately follows it in buff{i, j)|b,
(c) drini-region(j) = T, and
(d) b is in req-bottles().

(F) If dem(b) is at the head of buffi,7)|b and b is in bottles(j), then (b,i) is in
deferred(7).

(G) If drink-region(i) = T and b is in req-bottles(i) and bis in B;, j # i, then exactly
one of the following is true: req(b) is in buffi, j), or (b,1) is in deferred(j), or sat(b)
is in buff{(j, i), or b is in bottles(i).

(H) If b is in reg-bottles(i) and drink-region(i) = C, then b is in bottles(i).

Proof: In Appendix B. 8]
Here is the main theorem.

Theorem 4: Drink{B) solves the drinking philosophers probleia for B.

Proof: Drink(B) has the correct input and output actions by inspection and pre-
serves drinking-well-formedness by Lemma 2.

16

Let ¢ be a fair exccution of Drink(5) with schedule a. We verify the exclusion
implication.

Suppose « is drinking-weli-formed. We st show o satisfies (EX-B). Suppose
in contradiction that a = & Ci(B)ayC;j(D'Jay for some 7 and j, with BB’ # ¢,
vet ay contains no E;(B). By drinking-well-formedness, ¢ # §. Let s be the first
state of ay.

Since « is drinking-wel-formed, a)|B-TCER; ends in T\(B), and az|B-TCER;
is cmpty. By Lemma 1(a) and (b), drink-region(i) = C, and B = reg-bottles(i) in s.
Thu= by Lemma 3 (H), B < bottles(i) in s.

Again by drinking-well-formedness, a;Ci(B)ay|B-TCER; ends in T;(B'). By
Lemma 1(a) and {b), drink-region(;) = C, and B' = reg-bottles(j) in s. Thus by
Lemma 3 (H), B' C bottles(;) in s.

But since BN B' # @, there is some b in BN B', and thus in B; N Bj, such
that b is in dottles(i) and b is in- bottles() in 2, contradicting Lemma 3 (4). Thus o
satisfies (EX-B).

We conclude that Drink(B) eolves the drinking philosophers problem. o

4.2 No Deadlock and No Lockout

In this subsection we show that Drink(B) solves the no-deadlock (resp., no-
lockout) drinking philosophers problem if Dinc(B) solves the no-deadlock (resp.,
no-lockout) dining philosophers problem.

Lemma 5 consists of some invariants that are useful in doing the liveness proofs.
Lemma G is a technical lemma relating to dining-well-formedness. Lemma 7 states
that Dine(B) behaves properly in the composition, which means that the appro-
priate implications are true (e.g., exclusion and no-deadlock for dining, if Dine(B)
solves the no-deadlock dining philosophers problem). Lemma 8§ states that if all
bottles are eventually released, then all forks ave eventually released. The heart
of Lemma 8§ is showing that once-a_process in its drinking trying region enters its
dining critical region, it subsequently enters its drinking critical region and releases
its forks. Showing this depends on the dining exclusion implication (Lemma 7).

Lemma 9 is the key lemma and states that the no-deadlock implication for
dining philosophers implies the no-deadlock implication for drinking philosophers
(if all bottles are eventually released), and similarly for no-lockout. Lemma 9 is

17

proved as follows. Since all bottles are relensed, Lemnma 8 implies that all forks
are released. Then Lemma 7 implies that (ND-F) (or NL-F as appropriate) is true,
which in turn implies that eventually the dining critical region is entered and th2
drinking critical region is entered. Theorems 10 and 11 put the pieces together.

Lemma 5: Let ¢ be an execution of Drink{B) whose schedule is drinking-well-
formed. Then in every state of ¢, the following are true, for all i,

(A) If do-Ti) is true, then dine-region(i) = R.
(B) If do-EX(i) is true, then dine-region(i) = C.
Proof: In Appendix B. o

Lemma 6: Let e be an execution of Drink{B) whose schedule o is drinking-well-
formed. If Dine(B) preserves dining-well-formnedness, then

(a) « is dining-well-formed, and
(b) for any i, if a|B-TCER; is finite, then o|F-TCER; is finite.

Proof: (a) We show a is dining-well-formed by induction on the length of its
prefixes. The empty prefix is obviously dining-well-formed. Let a be a prefix of o
such that § is dining-well-formed. Let ¢ be any execution of Drink(B) with schedule
Ba; let s be the state of ¢ between S and a.

Case 1: a = T; for some i. By precondition of T;, do-T(i) is true in 5. By
Lemma 5 (A), dine-region(i) = R in s. By Lemma 1(¢), SIF-TCER; either ends in

R; or is empty.

Case £: a = C; for some i. Since Dine(B) preserves dining-well-formedness,
B|F-TCEL; ends in T;.

Case 3: a = E; for some i. By precondition of E;, do-E(t) is true in 5. By
Lemma 5 (B), dine-region(i) = C in s. By Lemma 1(c), B|F-TCER; ends in C;.

Case §: a = B; for some i. Since Dine(B) preserves dining-well-formedness,
B|F-TCER; ends in E;.

(b) Assume in contradiction that for some i, a|B-TCER; is finite but a|F-
TCER, is infinite.

18

Case 1: o|B-TCER; ends with Ti(DB) for some B. By Lemma 1, drink.
region{i) = T for the remainder of e. By dining-well-formedness, some C; action
occurs in ¢ after the final T;(B). By dining-well-formedness ancd Lemmas 1 and 5
(B), do-EX(i) is false when this C; occurs. By the code, do-E(7) never becomes true
after this point, since drink.region(i) = T when the C; occurs mdd no Ci(B) ac-
tion occurs subsequently, Thus there is no sabsequent E; action in ¢, contradicting
dining-well-formedness.

Case 2: «|B-TCER; cnds with Ci(B), E{B) or Ry(B) for some B. DBy
Lemma 1, drink-region(i) is never equal to 7' in the remainder of ¢. By dining-
well-formedness, some I; action acews in e after the final action in B-TCER;. By
dining-well-formedness and Lemmas 1 and § (A), do-T(i) is false when this R; oc-
curs. By the code, da-T\i) never becomes true after this point, since drink-region(i)
is not T' when the R; o xws and no T;(D) action ocewrs subsequently. Thus there
is no subscquent T; action in ¢, contradicting dining-well-formedness. 0

Lemma 7 shows that Dine(B) behaves properly in the composition.

Lemma 7: Let ¢ be a fair exccution of Drink{B) whose schedule « is drinking-well-
formed.

(a) Suppose Dinc(B) solves the dining philosophers problem. Then o satisfies (EX-
F).

(b) Suppose Dine(B) solves the no-deadlock dining philosophers problem. If «
satisfies (REL-F), then « satisfics (EX-F) and (ND-F).

(c) Suppose Dine(B) solves the no-lockout dining philosophers problem. If « satisfies
(REL-F), then « satisfies (EX-F) and (NL-F).

Proof: In all three cases, Lemma G6(a) implies that « is dining-well-formed. Let
¢' = ¢|Dine(B) and o' = sched(e'). Thus a' is also dining-well-formed, and if «
satisfies (REL-F), then so does o'. By a result in [LT], ¢' is a fair execution of
Dine(B). Thus « satisfies (EX-F) and cither (ND-F) or (NL-F) (as appropriate),
and so docs a. o

Next we show that if all bottles are eventually released, then all forks are
eventually released.

Lemma 8: Let e be a fair execution of Drink(B) whose schedule « is drinking-well-
formed and satisfies (REL-B). If Dine(B3) solves the dining philosophers problem
for B, then « satisfies (REL-F).

19

Proof: We must show that for all i, «|F-TCER; does not end in C;. Lemma 6(a)
implies that « is dining-well-formed. By Lemma 7(a), o satisfies (EX-F). Suppose
in contradiction that for some i, ¢ = ¢; C;ea. where no action from F-TCER; occurs
in e3. By Lemuma 1(c), dine-region(i) = C throughout ¢3. Let s be the last state of
€).

Case 1: drink-region(i) = C, E or R in 3. By the code, do-E(i) = true
throughout ¢z, Thus C;(B) and R;(B) wre disabled for all B throughout ¢; and
hence never occur in e3. By assumption, T, and E; never occur in e;. Yet E; is
enabled throughout ¢z, contradicting ¢ beiug fair,

Cuse 2: drink-region(i) = T in s. Let reg-bottles(i) = B in 3. If do-E(i) ever
becomes true in ¢z, then the same svgument us in Case 1 gives a contradiction.
Thus do-E{i) never becomes true in ¢a. By the code, then, Ci(B') never occurs in
¢z for any B, and by Lemnn 1{n) and (b) and drinking-well-formedness, no E;(B')
occurs, drink-region(i) = T, and reg-bottles(i) = B throughout ca.

At the beginning of ¢2, D(i) sends dem(b) for all b in B that it is still missing.
We now show that eventaally every missing bottle will be in bottles(i). By fairness
of ¢, each dem(b) is eventually received. Consider recipient D(j).

Case 2.1: b ¢ bottles(j) when dem(d) is received by D(j). Throughout ¢g,
D(i) never adds sat(b) to buff{i,s), since requests and demands arc deferred and
no E;(B') occurs. Since the quenes are FIFO, Lemma 3 (A) implies that the only
possibilitics when dem(bd) is reccived are that bis in bottles(i) or sat(b) is in buff7,).

Casc £.2: b € bottles(j) when dem(b) is received by D(j). By the code, there
are only two situations in which sat(h) is not immediately added to duff{j,).

Case 2.2.1: drink-region(j) = C and b € req-battles(j) when dem(b) is received
by D(j). By (REL-B), eventually some E;(B') oceurs subsequently in ez and thus
by the code sat(dh) is added to huffiy, /) then.

Case 2.2.2: drink-region(j) = T and dine-region(j) = C and b € reqg-bottles(j)
when dem(b) is received by D(j). Since a satisfies (EX-F). dine-region(j) can never
be C in ¢; by dining-well-formedness and Lemma 1(c), and this case cannot occur.

In both Cases 2.1 and 2.2, by fairness of e, the sat(b) message eventually arrives
at D(i) in e,.

Since ez contains no C;(B) action, by drinking-well-formedness no R;(B') or
Ci(B') occurs in eg for any B'. Yet once any bottle in B is in bottles(i) in ey, it

stays there for the rest of ¢2. Thus after sonie point in ¢z, Ci(B) is continuously
eaanbled, yet no action in that class of the partition occurs, contradicting ¢ being
fair. a

The next lemma states that no-deadlock for forks implies no-deadlock for bot.-
tles, and similarly for no-lockout.

Lemma 9: Let ¢ be a fair execution of Drink(8) whose schedule a is drinking-well-
formed and satisfies (REL-B). If Dine(B) solves the no-deadlock (resp., no-lockout)
dining philosophers problem, then « satisfics (ND-B) (resp., (NL-B)).

Proof: By Lemma 6(a), « is dining-well-formed. If Dine(B) solves either the no-
deadlock or the no-lockout dining philosophers problem, then Dine(B) obviously
solves the dining philosophers problem, and by Lemma 8§, o satisfies (REL-F).

Suppose in contradiction that a does not. satisfy (ND-B) (resp., (NL-B}), i.e.,
there exists an i such that a|B- TCER (resp.. a|B- TCER;) is finite and | B-TCER;
ends in E;(B) or T;(B) for some B. (Ending in C;(B) is ruled out by (REL-B).)

We now show that «|F-TCER; ends iu R;.

No.deadlock: Since o|B-TCER is finite, «|F-TCER is also finite by Lemma
6(b). By Lemma 7(b), o satisfies (ND-F), implying that «|F-TCER; cends in R;.

No-lockout: Since a|B-TCER; is finite, a|F-TCER; is also finite by Lemma
G(b). By Lemma 7(c), « satisfies (NL-F), inplying that o|F-TCER; ends in R;.

We now show that both possibilities for the final action in «|B-TCER; lead to
a contradiction.

Case 1: a|B-TCER; ends in T;(B) for some B. By Lemma 1(a), drink.
region(i) = T for the rest of e. Since «|F-TCER, ends in R;, dine-region(i) = R
for the rest of ¢ by Lemma 1. If the final R; oceurs before the final T;(B), then
do-T\i) is set to true when the Ti(B) oceurs. If the final R; occurs after the final
Ti(B), then do-T\i) is set to-truc when the R; occurs. In both cases, after some
point, do-T(1) is true for the rest of e. Thus after some point in e, T; is continuously
enabled, yet no action from that class of the partition occurs, contradicting ¢ being
fair.

Case 2: a|B-TCER; ends in E;(B) for some B. After this point, drink-region(1)
remains E and reg-bottles(i) remains B, by Lemma 1. Since o|F-TCER; ends in

R;, after some point in ¢ dine-regian(i) veumiux R by Lo 1. Thus by Lemma 5
(B), do-K(i) remains {alse, So after some point. in ¢, R;(B) is continvously enabled,
yet no action in that class of the partition ocows, contradicting ¢ being fair. 0

The main theorems follow.

Theorem 10: If Dine(B) solves the no-deadlock dining philosophers problem for
B, then Drink(B) solves the no-deadlock drinking philosophers problem for B.

Proof: Drinl{5) has the corvect input ane ontput actions by inspection and pre-
serves drinking-well-formedness by Lemma 2,

Let ¢ be a fair execution of Irink{B). Ve verify the exclusion and no-deadlock
implications. The exelusion implieation is trne by the smne argument as in the
proof of Theorem 4. The no-deadlock implication is true by Lemma 9. o

Theorem 11: If Dine(B) solves the no-lockout. dining philosophers problem for B,
then Drink(B) solves the no-lockout drinking philosophers problem for B.

Proof: Analogous to the proof of Theorem 10. o

4.3 Concurrent Drinking

In this subsection we show that Drink{5) solves the more-concurrent drinking
philosophers problem, regardless of the behavior of Dine(8) (as long as it preserves
dining-well-formedness). In essence, the condition (NOV-B); is so strong that the
dining subroutine is not needed to arbitrate disputes. Lemma 12 proves several
invariants about dem(b) messages and is used in the proof of the next lemma (ns
well as in the complexity analysis). Lemna 13 is the main one, stating that the
no-overlap condition implies the never-stuck condition. Theorem 14 puts the pieces
together.

A dem(b) message in buffi,j) is current if one of the following is true: a
sat(b) messuge precedes it in buff(i, 7), or b is in bottles(J), or n sat(b) message is in

bufflj,1).

Lemma 12: Suppose Dine(B) preserves dining-well-formedness. Let e be an execu-
tion of Drink{B) whose schedule is drinking-well-formed. The following predicates
are true in every state of ¢, for any i, j and b.

(A) If there is a current dem(b) message in buff(i, §), then

22

(a) drink-region(i) = T,

(b) dine-region(i) = C,

(c) b is in req-bottes(s), and
(d) do-EXi) is false.

(B) There is at most one current dem(b) message in buffi, j).
(C) There is at most one non-current den(b) message in buffi, j).
Proof: In Appendix B. a

Lemma 13: Let ¢ be a fair exccution of Drink(B) whose schedule « is drinking-
weil-formed and satisfies (NOV.B);, for some fixed i. If Dine(B) preserves dining-
well-formedness, then a satisfies (NS-B);.

Proof: Recall that (NOV-B), states that for all j and any B and B' with BNE' # @,
the following two conditions hold: (1) if & = 8, Ti(B)#2T;(B)Bs, then B contains
Ci(B); and (2) if & = A1 T;(B")82Ti(B)Bs, then B, contains E;(B').

Suppose in contradiction to (NS-B); that a|B-TCER; ends in T(B) or Ei(D)
for some B.

Case 1: «|B-TCER; ends in T;(B). By (NOV-B);, drinking-well-formedness
and Lemma 1(a), for all j # i, drink-region(j) = E or R for the rest of ¢ after the
final T;(B). When the final T;(B) occurs, a request message for each bottle b in B
that is not in dottles(i) is placed in the approprinte buffi, j). Since e is fair, it is
eventually delivered. By Lemma 3(c), b is in bottles(j) when the request is received
and by the code D(j) immediately satisfics the request. Since ¢ is fair, the satisfy
message is eventually delivered to D(i).

We now show that once b is in bottles(i) after the final T;(B), it remains there.
Since drink-region(j), 7 # i, is never equal to T after the final T;(B), Lemma 3 (D-d)
implies that D(i) never veceives reg(b) after the final Ti(B). Similarly, Lemma 11
(A-a) implies that D(i) never reccives au dem(h) message for b in bottles(i) after the
final T;(B). Thus there is a point in ¢ after which every bottle in B is in bottles(i)
and remains there.

By Lemma 6(b), «|F-TCER; is finite. Consider the point in e after the latter
of (1) the last action in F-T'CER; and (2) the point after the final T;(B) when B C
bottles(i). If do-E(i) is true at this point, then E; is continuously enabled for the
rest of e, yet no action in that class of the partition occurs, contradicting e being

23

fair. If do-E(i) is false at this point, then C,(B) is continnously enabled for the rest
of ¢, yet no action in that class of the partition oceurs, contradicting ¢ being fair.

Case 2: o|B-TCER; ends in E;(DB). By Lemma 6(b), «|F-TCER,; is finite.
After the latter of the final action in F-TCER, and the fincl E;(B), do-E(i) is
cither true or false. If do-E(7) is true at this point, then E; is continuously enabled
for the rest of ¢, yet no action in that cluss of the partition occurs, contradicting
¢ being fair. If do-E(i) is false at this point, then Ci(B) is continuously enabled
for the vest of ¢, yet no action in that class of the partition occurs, contradicting ¢
being fair. 0

Theorem 14: If Dine(B) preserves dining-well-formedness, then Drink(B) solves
the more-concurrent drinking philosophers problem for B.

Proof: Drink(B) has the correat input mud output actions by inspection and pre-
serves drinking-well-formedness by Lema 2,

Let ¢ be n fair exccution of Drink{B) with schedule a. We verify the exclusion,
and mors-concurrent for i (1 £ i < n) implications. The exclusion implication is
true by the same argument as in the proof of Theorem 4. The more-concurrent for
t implieations, 1 £ ¢ € n, are trie by Lenuna 13, (Lemma 13 is applicablz because
Lemma 6(a) impuies that a is dining-well-formed.) 0

5. Complexity Analysis

In this section, we analyze the worst-case waiting time of our algorithm as well
as cvaluating it using the criterin listed in [CM]. The aunalysis of the worst-case
waiting time shows that the limiting factor is the no-lockout dining philosophers
subroutine. By replacing the O(n) time subroutine of [CM] with an O(1) time
subroutine (for instance, that of [Ly]), we obtain an O(1) time drinking philosophers
algorithm.

We would like to bound how long a user must wait after requesting to enter
its critical region until it does so. The following definitions provide a measure of
time complexity for our model that is analogous to that in [PF), in which an upper
hound on process step time, but no lower bound, is assumned. (Thus, all interleavings
of system events ave still possible.) Our timing definitions provide distinct upper
bounds on process step time and on-message delivery time.

Given an execution e of automaton A, where ¢ = spaysyay.. ., a timing function
for e is an increasing function ¢, mapping positive integers to nonnegative real

24

aumbers such thet for ench real number ¢, only a finite number of integers i satisfy
te(1) < t. Intuitively, t(7) is the real time at which ¢; oceurs; we rule out an infinite
number of actions eccurring before a finite real time,

Let f be a function mepping each cluss of the partition part(Ad) to a positive
real number. Execution e is f-bounded if the following condition is true for each
class C of the partition part(Ad). For each i 2 0, either

(1) there exists j > i such that «; is in C wnd te(j) = te(i) £ f(C), or

(2) there exists j > i such that no action of C is enabled in s; and £,(j) = ¢.(i) £

HC).

That is, stacting at any point in the execution, within time f(C) cither some output
action in C occurs, or else the automaton passes through a state in which no output
action in C is cnabled. Each class of the partition is considered separately, since
ench class corresponds, in some sense, to a distinct entity in a larger system.

Now we analyze the worst-case time behavior of the no-lockout drinking
philosophers algorithm, automaton Drink(l3), which uses any no-lockout dining
philosophers subroutine Dine(B) for B. Let £ map eachclass {Ci(B), Ri(B), Ti, Ei :
B C B;) to some positive real ¢ and each cluss {deliver(in,i,7) : m = reg(b),dem(b)
or sat(h)} to some positive veal d. Thus, ¢ is the upper bound on process step time
and d is the upper bound on the message delay. Let £ be the set of all fair f-bounded

executions of Drink(B) whose schedules are drinking-well-formed and satisfy (REL-
B).

Let tryprinx be the maximum time, over all 1 and all B C B;, between any
T;(B) action and the subscquent C;(B) action, in any exccution in €. Let critpeink
be the maximum time, over all i and ail B C B;, between any Ci(B) action and the
subsequent E;(B) action, in any execution in &,

Let trypine be the muaximum time over all 7 between any T action and the
subsequent C; action, in any execution in &, Let eritp;ye be the maximum time
over all 1 between any C; action and the subsequent E; action, in any execution
in £. Let ezitp;ne be the maximum time over all ¢ between any E; action and the
subscquent R; action, in any execution in €.

We assume that critp,iu and ezilp;,. ave constants.

Theorem 16 gives an upper bound on trypei,r, the maximum time a user
process must wait after requesting to enter its critical region until it is allowed to

25

do so. It is proved using Lemma 15, which bounds the munber of messages in any
buff(i, j). The proof of Lemuma 15 in turn uses Lemma 12,

First we show that there is a bounded number of messages in any buff. Let r
be the maximum number of bottles shaved by any two drinkers.

Lemma 13: Suppose Dine(B) preserves dining-well-formedness. Let ¢ be any
execution of Drink(B) whose schedule is dvinking-well-formed. Then in any state
of ¢, there are at most 4r messages in buffli, j) for any i and j.

Proof: Choose any 1 and j, / # j. Let s be any state in e. By Lemuma 1(d),
bufl{i,7)|b is empty unless b is in B; N B;. There are at most r bottles in B; N B;.
Choose any such b. By (D-a) of Lemma 3, there is at most one req(b) message
in buff{i,j) in s. By (E-a) of Lemma 3, there is at most one 3at(b) message in
buff(i,j) in 8. By (B) of Lemma 12, there is ut most one current dem(b) message
in buff{i,7) in s. By (C) of Lemma 12, there is at most one non-current dem(b)
message in buff{i,7) in s. Thus there are at most four messages in duf{i, j)|b. The
result follows. (8]

The main theorem follows.
Theorem 16: tryprink < 3¢+ 8rd + czilpine + try pine + CritDrink.

Proof: Choose ¢ in £ and fix i{. Suppose T;(B) occurs at time t, for some B. In
the worst case, dine-region(i) = C at time ¢. By time ¢ later, E; occurs, by time
ezitp;n, later, R; occurs, by time ¢ later, T; occurs, and by time tryp;ae later, T,
occeurs.

When this T; occurs, D(i) sends a dem(b) message for all required and missing
bottles. By Lemma 15, the demand is raceived by time 4rd later. As in the proof
of Lemma 8 (Case 2.2.2), cither the recipient immediately sends sat(b) to D(i) or
clse the recipient is in its drinking critical region and sends sat(b)-by time critpyin
later. By Lemma 15, the sat(b) is received by time 4rd later. By time ¢ later, C;(B)
occurs. a

Since we assume that crilp,;,i, ezitpine. 1. d and c are constants, the worst-
case waiting time of this solution depends on trypiye, the worst-case waiting time of
the dining philosophers subroutine. For any dining philosophers algorithm, trypine
depends on critpin.. We now give an informal argument for an upper bound on
eritpine. Once C; occurs, E; will not occur until after D(i) has sent demands for
needed bottles, these demands have been satisfied, and D(7) has entered its drinking

26

critical region. The upper bound then is 2¢+ Srd+ eritprnt. Thus critp;.. is also
a constant, under our assumptions.

The dining philosophers subroutine wsed by Chandy and Misra (1984) has
trypine of O(n). By replacing it with, for instiauce, the dining philosophers algo-
rithm of Lynch (1981), which has worst-case waiting time of O(1), we obtain a more
efficient drinking philosophers algorithm. The algorithm of Lynch (1981) has time
O(1) in the sense that the worst-case waiting time is a function of local information,
including the maximum number of uscrs for each resource, and the maximum nume-
ber of resources for each usecr, and is not necessarily a function of the total mumber
of users.

Our drinking philosophers algorithmn could be modified to replace » with a
small constant, if the request, demand, and satisfy messages took u set of bottles
as arguments instead of a single bottle.

Five criteria for evaluating resource allocation algorithms are given by Chandy
and Misra (1984) — fairness, symmetry, economy, concurrency and boundedness.
We discuss each in turn.

Fairness corresponds to our definition of no-lockout. Our drinking philosophers

solution has the no-lockout property as long as the dining philosophers subroutine
has it.

Symmeiry means that each process runs the identical program. This property
is true of our solution, as long as it is true of the subroutine.

Economy mcans that processes send and receive a finite number of messages
between subsequent entries to their critical regions, and a process that cnters its
critical region a finite number of times does not send or receive an infinite number
of messages. Our solution has this property: Recall that when Ti(B) occurs, D(7)
sends req(b) messages . all missing resonrce. It defers any req(b) messages it
reccives when drink-region(i) = T, but yields to dem(b) messages. When dine-
region(i) becomes C, it sends dem(b) messages for any missing resources. Thus at
most four messages (req(d), sat(b), dem(h), sat(b)) are sent on behalf of any bottle
for any one trying attempt. Furthermore, once a drinker stops wanting to enter its
critical region, it may receive a request for each of its bottles, but after satisfying
the requests, it never sends or receives any more messages.

Concurrency means that “the solution doces not deny the possibility of simul-
tancous drinking from-different bottles by different philosophers.” This is certainly

27

true of our algorithm, since it satisfiex the more-concurrent condition. More precise
formulations of “concurrency” were given in owr definitions (see Sections 3 and 6).

Boundedness means that the number of messages in any bduff{(i, ;) variable is
bounded, and the size of each messuge ix bounded. This is certainly true of our
solution, by Lemma 13.

6. Conclusions

Ve have given precise definitions of several versions of the dining philosophers
and drinking philosophers problems, ¢ach version satisfying different liveness and
concurrency conditions. We described a modular drinking philosophers algorithin
that used as a true subroutine any dining philosophers algorithm. We proved the
correctness of our algorithm, and analyzed its time complexity. One advantage of
our modular approach is that an algorithm with improved worst-case time perfor-
mance can be obtained by using a time-efficient dining philosophers subroutine. We
close with a discussion-of other versions of the drinking philosophers problem.

The version of the drinking philosophers problem specifying the most concur-
rency would require that if a drinker requests u set B of bottles, it should eventually
enter its critical region, as long ns no other drinker uses any of the bottles in B
forever. (Some bottles in B could be kept forever after this request is satisfied.)
Unfortunately, neither the algorithm in this paper nor that of Chandy and Misra
(1984) satisfies this conditions. An interesting problem would be to devise one that
docs.

The following situation shows that our algorithm does not solve the *most
concurrent” drinking philosophers problem. (Essentially the same scenario shows
that the algorithm of Chandy and Misra (1984} also does not.) Suppose there are
three drinkers. 1, 2 and 3; 1 and 2 share bottle a, 2 and 3 share bottle b, First,
1 gets bottle a, enters-its drinking critical region, and stays there forever. Then 2
requests « and b, obtains b, and enters its dining critical region. Since 2 can never
obtain a, it stays in its dining critical region forever. Finally, 3 requests b. Drinker
2 does not relinquish b upon a mere request, and 3 can never demand b, because
it can never enter its dining critical region. Thus, even though 3’s bottle request
includes no bottle that is-ever in use, it can never enter its drinking critical region.

There is a version of the drinking philosopliers problem specifying a degree of
concurrency intermediate between strongest and more-concurrent, that the algo-
rithm of Chandy and Misra (1984) solves and ours does not. The informal descrip-
tion is that if a drinker requests a set B of bottles, it should eventually enter ite

28

critical region, as long as no other dvinker uses or wants any of the bottles in B
forever.

The following scenario shows that our slgorithim docs not solve this problem.
Suppose there are five drinkers, 1 through 5. Drinkers 1 and 2 share bottle «a, 2
and 3 share b, 3 and 4 share ¢, and 3 and 5 shave d. First, 1 gets a, enters its
drinking critical region and stays there forever. Then 2 requests a and b, obtains b
and enters its dining critical region. As in the previous scenario, 2 remains in its
dining critical region forever. Next, 3 requests ¢ and d. It obtains ¢ from 4. Then
4 requests ¢ from 3, the request is deferred. 4 demands ¢ from 3, and the request
is satisfied. Now 3 obtains ¢ from 5. But 3 will never get ¢ from 4, because it can
never demand it. Thus, although none of the hottles required by 3 are ever wanted
forever by another drinker, 3 caunot enter its drinking critical region.

In contrast, the algorithm of Chandy and Misra (1954) will allow 3 to enter
its drinking critical region. The forks in the dining philosophers algorithm provide
a priority for the use of the corresponding bottles by the drinkers. The priority
alternates between the two processes sharing the resource. Thus, once 3 obrains ¢ it
will not relinquish it until it has gotten to use it. In general, priority is broken down
on a link-by-link basis, whereas in our (1nore modular) algorithm, the priority comes
only with entering the dining critical region. In-other words, one can optimize to
gain extra concurrency at the expense of violating modularity.

Acknowledgments

We thank Alan Fekete and Prasad Sistla for helpful discussions.

References

Chandy KM and Misra J (1984) The Drinking Philosophers Problem, ACM Trans.
on Programming Languages and Systems, 6:632--646.

Dijkstra EW (1971) Hierarchical Ordering of Sequential Processes, Acta Informat.-
ica, 1:115-138.

Lynch NA (1981) Upper Bounds for Static Resource Allocation in a Distributed
System, JCSS, 23:254-278.

Lynch NA and Tuttle MR (1987) Hierarchical Correctness Proofs for Distributed
Algorithms, Proc. 6% Ann. ACM Symp. on Principles of Distributed Computing,

29

pp. 137-151. (Also available as technical report MIT/LCS/TR-387, Laboratory for
Computer Science, Massachusetts Institute of Technology, 1987.)

Peterson GL and Fischer MJ (1977) Economicul Solutions for the Critical Section
Problem in a Distributed System, Proc. 9'* Anun. ACM Symp. on Theory of Comyp..
pp. 91-97.

Appendix A

In this Appendix, we review the aspects of the model of Lynch and Tutile
(1987) that are relevant to this paper.

An input-ontput axtomaton A is defined by the following four components. (1)
There is a (possibly infinite) set of states with a subset of start states. (2) There is
a sct of actions, associated with the state transitions. The actions are divided into
three classes, inpui, oufput, and internal. Input actions arc presumed to originate
in the automaton’s environment; consequently the sutomaton must he able to react
to them no matter what state it is in. Output and intemal actions (or, locslly-
controlled actions) are under the local control of the automaton; internal actions
model events not observable by the envirommnent. The input and output actions are
the czternal actions of 4, denoted cxt(A). (3) The transition relation is a set of
(state, action, state) triples, such that for any state s’ and input action x, there is
a transition (s',x,s) for some state 3. (4) There is an equivalence relation part(A)
partitioning the output and internal actions of 4. The partition is meant to reflect
separate pieces of the system being modeled by the automaton. Action x is enabled
in state 3’ if there is a transition (s, x, &) for some state s.

An ezecution e of A is a finite or infinite sequence so713; ... of alternating
states and actions such that sy is a staxt state, (8;-), 7, ;) is a-transition of A for
all {, and if ¢ is finite then ¢ ends with a state. The schedule-of an execution e is
the subsequence of actions appearing in e.

We often want to-specify a desived behavior using a set of schedules. Thus
we define an ezternal schedule module S to consist of 4 set of input actions, a set
of output actions, and a set of schedules. Each schedule of S is-a finite or infinite
sequence of the actions of S. Internal actions are excluded in order to focus on the
behavior visible to the outside world.

Let A be an automaton or schedule module and P be a predicate on sequences
of actions of A. A preserves P if for every schedule fa of 4 such that P is true of
B and a is a locally-controlled action of A, then P is also true of fa.

30

Automata can be composed to form another automaton, presumably miudeliug
a system made of smaller components, Automata communicate by synchroniziag on
shared actions; the only allowed situations are for the output from one automaton
to be the input to others, and for several nutomata to share an input. T.ws,
automata to be composed must have no output. actions in common, and the internal
astions of each must be disjoint from all the actions of the others. A state of the
<omposite automaton is a tuple of states, one for ench component. A start state
¢f ‘he composition has a start state in ench component of the state. Any outy.
astion of a component becomes an output action of the composition, and similarly
for an interun! action. An input action of the composition is an action that is input
for every com;. ment for which it is an action. In a transition of the composition
n action #, swrh component of the state chunges as it would in the component.
aviannnion if x aceurred; if « is not an action of some component automaton,
then the canmsponding stis+ component does not change. The partition of the
composition ix the union of the mtitions of the component automata.

Given an automaton A4 and a subset. IT of its nctions, we define the automaton
Hiden(A) to be the automaton A’ differing from 4 only in that each action in II
becomes an internal action. This aperaion is useful for hiding actions that model
interprocess communication in & composite automaton, so that they-are no longer
visible to the environment of the composition.

An exccution of a system is fair if each component is given a chance to make
progress infinitely often. Of course, a process might not be able to take & step every
time it is given a chance. Formally stated, exceution ¢ of automaton A is fair if for
cach class C of part(A), the following two conditions hold. (1) If ¢ is finite, then no
action of C is enabled in the final state of ¢. (2) If ¢ is infinite, then either actions
from C appear infinitely often in ¢, or states in which no action of C is enabled
appear infinitely often in e. Note that any finite exceution of A is a prefix of some
fair execution of A.

The following result from [LT] is very uscful: If ¢ is a fair execution of a compo-
sition of automata, and A is one of the components, then ¢|4 is a fair execution of
A. (If e = somy 8 ..., we define e[A to be the sequence obtained from e by deleting
#i3; if w; is not an action of A, and replacing the remaining s; with A’s component.)

A problem is (specified by) an external schedule module. Automaton A solves
the problem P if 4 and P have the same input and output actions, and if {a|ext(A4) :
« is the schedule of a fair execution of 4} is a subset of the set of schedules of P.

31

In other words, the behavior of A visible to the outside world is consistent with the
behavior required in the problem specification.

Appendix B

This «ppendix contains the proofs of Lemmas 3, 5 and 12, all of which state
that certain predicates are invariauts.

Lemma 3: Let ¢ be an exccution of Drink(B) whose schedule is drinking-well-
formed. Then in every state of e, the following are true, for all i, j and b.

(A)Ifbisin 3;nDB;,i # j, then exactly one of the following is true: b is in bottlesi),
or b is in bottles(3), or sat(b) is in dbuffi, i), or sat(b) is in dbuffj,i). If b is in B;
only, then b is in botties(t).

(B) If (b,j) is in deferred(i), then
(a) b is in bottles(i),
(b) drink-region(j) = T, and
(c) b is in reg-bottles(;).

(Cj If req(b) is at the head of buff(i, j)|b. then b is in botiles().

(D) If req(d) is in-duff{i,j), then
(a) at most one req(d) is in buff(i,j),
(b) no sat(b) follows it in buff{i,y),
(¢) (b,1) is not in deferred(s),
(d) drink-regien(i) = T,
(e) b is in reg-bottles(i), and
(f) b is not in bottles(i).

(E) If sat(b) is in dbuffi,j), then
(a) at most one sat(b) is in buffii,j),
(b) no dem(b) immediately follows it in buffi, 5)|b,
(c) drink-region(j) = T, and
(d) b is in req-bottles(y).

(F) If dem(b) is at the head of buff(i, j)|b and b is in bottles(j), then (b,i) is in
deferred(s).

(G) If drink-region(i) = T and b is in req-bottles(i) and b is in Bj, j # i, then exactly
one of the following is true: req(b) is in buffi,), or (b,) is in deferred(s), or sat(b)
is in buff(j,1), or b is in bottles(i).

32

(H) If b i3 in req-bottles(i) and drink-region(i) = C, then b is in bottles(i).

Proof: Let ¢ = 5013y . .. ap3m We proceed by induction on m, which indexes
the states of «.

(A) through (H) are obviously true of 54, since it is a start state of a composition
of compatible automata. Asswming (A) thvough (H) are true of ¢4y, We show they
are true of 3,,. We consider every possible vaulue of a,,.

Case 1: a, = Ti(B).

Claims about $,—):

1. drink-region(i) = R, by drinking-well-formedness and Lemmna 1(a).

2. (b, i) is not in deferred(j), for all b &nd j, by Claim 1 and (B-b).

3. sat(d) is not in buflj,), for all b and j, by Claim 1 and (E-c).

4. req(d) is not in buff{i.7), for all b and j, by Claim 1 and (D-d).

5. If sat(d) is not in duff{i,j) and b is not in bottles(i), then b is in dottles(;), where
bisin By, j # i, for all b, by Claim 3 and (A).

6. If duff(i,j) is empty and b isnot in bottles(i), then b is in bottles(j), where b-is
in B;, j # 1, for all b, by Claimn 5.

Claims about 3,4:

7. req(b) is in buff{i,s) iff b is not in bottles(i) and b is in req-bottles(i) and b is in
B N B;, for all b and j, by Claim 4 and code.

8. Ifreq(b) is at the head of duff{i,) and b is not in dottles(i), then b is in dottles(;),
for all b and j, by Claim 6 and code.

9. If req(d) is at the head of buff(i,), then b is in dottles(s), for all b and j, by
Claims 7 and 8.

(A) No relevant change.

(B) Only (B-c) is affected, for (h,¢). By Claim 2 and code, no (b,i) is in
deferred(j) in s,n, so the predicate is vacuously true.

(C) Only changes affect req(d) in buffii,j); by Claim 9.

(D) Only changes affect reg(b) in buffii, j). (a) and (b) by Claim 4 and code.
(c) by Claim 2 and code. (d) by code. (e) and (f) by Claim 7.

(E) Only (E-d) is affected, for sat(h) in buff{(j,7). None by Claim 3 and code,

so vacuously true.

33

(F) No relevant changes.

{G) Only changes involve i. Suppose b is in reg-dottles(i) in s,.. By Claims
2 and 3 and code, we only need to show that reg(b) is in buf{i,;) iff b is not in
bottles(i), which is true by Claim 7.

(H) Only changes involve i. By code, drink-region(i) = T in $m, 50 vacuously
true.

Casc 2: am = Ei(B).

Claims about 3,):

. drink.region(i) = C, by drinking-well-formedness and Lemma 1(a).

. (b,1) is not in deferred(j), for all b and j, by Claim 1 and (B-b).

. reg(b) is not in duff{i, j). for all and j, by Claim 1 and (D-d).

sat(}) is ot in buffj, i), for all b and j. by Claim 1 and (E-c).

» 16(d,J) i in deferred(i), then b is in bottles(i), for all b and j, by (B-a).

. If (b,j) is in deferred(i), then j # i, by Lemma 1(¢).

. 1 (b,7) is in deferred(i), then b is not in bottles(;), sat(b) is not in buff(i, i}, and
sat(b) is not in duff(j, i), for all b and j, by Claims 5 and 6 and (A).

8. If (b, j) is in deferred(i), then req(b) is not in duf% j, i), for all b and j, by Claim
(D-c).

9. If (b)) is in deferred(i), then drink-region(j) = T and b is in req-dottles(1), for
all b and j, by (B-b) and (B-c).

10. If (b,7) is in deferred(i), then req(h) is not in dufRj, i), for all b and j, by Claim
9 and (G).

-naca;c-uww

(A) Oniy affects b such that (b, /) is in deferred(i) in s,,-;. By Claim 7 and
code.

(B) Only affects deferred(i) and deferred(j). By Claim 2 and code, no (b,1)
is in deferred(j), so vacuously true. By code, no (b,7) is in deferred(i) in sm, so
vacuously true.

(C) Only aftects buff(j, i), where (b,5) is in deferred(i) in $y—;. By Claim 8
and code, no req(d) is in dbuffij,) in s,,, so vacuously true.

(D) Only affects buffis, 7). By Claim 3 and code, no reg(d) is in duff{i,7) in

$m, S0 vacuously true.

34

(E) Only affects buffli, ;) such that (b, j) is in deferred(i) in spm—y, and duff{7,1)
for all j. By Claim 4 and code, no sal(d) is in beffj, 1) in 24, 30 vacuously true.
Supposc sat(d) is added to bufRi, ;) in s,,, Then (b, j) is in deferred(i) in s,u—y. (a)
By Claim 7 and code. (b) By code. (¢) and (1) By Claim 9 and code.

(F) Only affects i. Since (F) is true in s,,-) and by code b is removed from
battles(i) if and only if b is removed from deferred(i) in 3., still true,

(G) Only affects j, where (b, j) is in deferred(i) in $,u—y. By Claim 10 and
code, req(b) is not in buff{,i) in sm. By Claim 7 and code, b is not in bottles() in
$m. By code, (b,7) is not in deferred(i) and sat(b) is in buffl7,7) in Spm.

(H) Only affects i. By code, drink-region(i) = E in $,4, so vacuously true.

Case 3: an = deliver(sat(d), j,1).

Claims about 3p_;:

sat(b) is at the head of duf(j, i), by precondition.

bis in B; N B;, by Claim 1 and Lemma 1(d).

b is not in bottles(i), by Claims 1 and 2 and (A).

b is not in bottles(5), by Claims 1 and 2 and (A).

sat(b) is not in duff{i,), by Claims 1 and 2 and (A).

At most one sat(b) is in dbuf{j,), by Claim 1 and (E-a).
No dem(b) immediately follows sat(h) in buff{(j,i), by Claim 1 and (E-b).
drink-region(i) = T, by Claim 1 and (E-c).

. bis in reg-bottles{i), by Claim 1 and (E-d).

10. req(b) is not in buff(i, j), by Claims 1, 8 and 9 and+(G).
11. (b,1) is not in deferred(j), by Claims 1. 8§ and 9 and (G).
12. bis not in bottles(i), by Claims 1, 8 and 9 and (G).

09’?'?’9"."'9!*’."

(A) Only affects b. By Claims 4, 5 and 6 and code.
(B) No relevant change.
(C) Only affects buff(j,1)|b. By code, since b is added to bottles(i).

(D) Only affects b. By Claim 10 and code, no reg(b) is in bufl{i, j), so vacuously
true.

(E) No relevant change.

(F) Ounly affects buffj,7). By Cluim 7 wud code, dem(b) is not at head of
buff(,1), so vacuously true.

(G) Only affects b and i. By Claims 6, 10 and 11 and code.

(H) No relevant change.

Case §: ay = deliver(req(h).j,i).

Claims about 3,

. req(b) is at the head of buff(j,), by precondition.
bis in B; N B;, by Claim 1 and Lemmn 1(d).

b is in bottles(i), by Claim 1 and (C).

b is not in bottles(j), by Claims 2 and 3 and (A).
sat(b) is not in duff{i,j), by Claims 2 and 3 and (A).
sat(b) is not in buff{j,i), by Claims 2 and 3 and (A).
Exactly one reg(b) is in dbuff{,i), by Claim 1 and (D-a).
drink-region(j) = T, by Clain 1 and (D-d).

. bis in req-bottles(j), by Claim 1 and (D-e).

10. req(b) is not in buff{i, j), by Claim 3 and (D-f).

fy

© P NO AW

(A) Only affects b. By Claims 4, 5 and G and code.
(B) Only affects (b,7). (a) by code. () by Claim 8. (c) by Claim 9.

(C) Only affects buff(j,i). By Claim 7 and code, no req(b) is in dbuffj, i), so
vacuously true.

(D) Only affects buff{i.j) and buff{;,1). By Claims 7 and 10 and code, no
req(b) is in either buff, so vacuously true,

(E) Only affects buffi, j) if sat(b) is ndded. (a) by Claim 5 and code. (b) by
code. (¢) by Claim 8 and code. (d) by Claim 9 and code.

(F) Only affects buff{i, 7)|b. By code, b is removed from bottles(i) if and only if
(b,7) is removed from deferred(i).

(G) Only affects b and j. By Claim 7 and code, no reg(b) is in duff{7,1) in sm.
By Claim 4 and code, b is not in bottles(j) in s,,. By Claim 5 and code, sat(d) is in
buff(i,) if and only if (b,7) is not in deferred(i) in s,,.

36

(H) Only affects b and 1. By Claim 3 and code.

Case §: aw = deliver(dem(b),7,i). If b is not in bottles(i) in 3m—1, then no |
relevant changes are made, Assume b is in bottles(i) in &p-;.

Claims about 3,1:

b is in botiles(i), by assumption.

dem(b) is at the head of duff{j, <), by precondition,
bis in B; N Bj, by Claim 2 and Lemma 1(d).

b is not in bottles(;), by Claims 1 arcd 3 nnd (A).
sat(b) is not in duff{i,), by Cluims 1 and 3 and (A).
sat(b) is not in buff{j,i), by Claims 1 and 3 and (A).
(b,7) is in deferred(i), by Claims 1 and 2 and (F).
drink-region(j) = T, by Claim 7 and (B-D).

. bis in reg-bottles(5), by Claim 7 and (B-c).

10. req(b) is not in buf{j,1), by Claim 7 and (D-c).

11. reg(b) is not in buff(i, j), by Claim 1 and (D-f).

© oo o W

(A) Only affects b. By Claims 4, 5 and 6 and code.

(B) Only affects (b,j). By Claims 1, 8 and 9 und code.

(C) Only affects buff{j,i)|b. By Ciaim 10 and code, vacuously true.

(D) Only affects buf{j,¢) and duffi,j). By Claims 10 and 11, vacuously true.

(E) Suppose sat(b) is added to buffii,j). (Nothing else is affected.) (a) By
Claim 5 and code. (b) by code. (c) by Claim 8 and code. (d) by Claim 9 and code.

(F) Only affects buff(i,7)|b. By code, if b remains in bottles(i), then (b,)) is in
deferred(i) in s,,.

(G) Only affects j and 5. By Claim 10. no req(b) is in duff{j,i) in s,,. By
Claim 4, J is not in bottles(j) in s,4. By code, (b,) is in deferred(i) if and only if
sat(b) is not in duff{i,s) in spm.

(H) By Claim 1 and code.

37

Case 6: am = C;.

Claims about 3,y If drink-region(i) # T in 5,4-), then no relevant changes occur.
Suppose otherwise. Only b in req-bottles(i) and not in dattles(i) is affected.

. drink-region(i) = T, by assumption.

. bis in req-bottles(i) N B;, j # i, by assumption,

. bis not in bottles(i), by assumption.

. req(b) is in duff{i, ;), or (b,i) is in deferred(i), or sat(b) is in duff{j,i), by Claims
2 and 3 and (G).

. If sat(b) is in duff{i,5), then no sat(b) is in bufi{j,?) and b is not in bottles(j), by
A).

6. If sat(b) is in duff(i,j), then (b, i) is not in deferred(j), by Claim 5 and (B-a).
7. If sat(b) is in duffi,), then req(b) is in duffi, j), by Claims 4, 5 snd 6.

8. If sat(b) is in buff{i,j), then req(b) follows it in bufft, j), by Claim 7 and (D-b).
9. If buffi,)|b is ecmpty and b is in bottles(;), then no sat(d) is in buffj,i), by
Claim 2 and (A).

10. If buffli,j)|b is empty and b is in bottles(j), then (b,i) is in deferred(j), by
Claims 4 and 9.

Ct = ks W D

Loun]

(E-b) by Claim 8.
(F) by Claim 10.

Rest are not affected.

Cose 7: ay, = Ci(B). By Lemma 2, sched(e) is drinking-well-formed; thus
in sched(e)|B-TCER;, a,, is immediately preceded by Ty(B). By Lemma 1(b),
req-bottles(i) = B in spymy.

Claims about s,,_,:

1. drink-region(i) = T. by precondition.

2. If b is in reg-bottles(i), then bis in botiles{i), for all b, by precondition.

3. If b is in req-bottles(i), then b is not in boitles(s), where b is in B;, j # i, for all
b, by Claim 2 and (A).

4. If (b,1) is in deferred(j), then i # j and bisin B; N B;, for all b and 7, by Lemma
1(e).

5. (1) is not in deferred(j), for all b and j, by Claiins 3 and 4 and (B-a) and (B-c).
6. req(h) is not in huff(i.), for all b and j, by Claim 2 und (D-¢) and (D-f).

38

7. If bis in req-dottles(i), then sat(b) is not in buff(j, i), where b is in B;, j # i, for
all 4, by Claim 2 and (A).

8. If bis not in reg-bottles(i), then sat(h) is not in huff{j, i), where bisin B}, j # i,
for all b, by (E-d).

9. duff{j,1)|sat(b) is ecmpty for all b not in Bj, by Lemma 1(d).

(B-b) vacuously true by Claim 5.
(D-d) vacuously true by Claim 6.
(E-c) vacuously true by Claims 7, 8 and 9.

The rest are unaflected.

Case 8: an = Ri(B). The only change is that drink.region(i) becomes R in
3m. By Lemma 2, sched(e) is drinking-well-formed; thus in sched(e)|B-TCER;, am
is immediately preceded by Ei{8). By Lemma i{n), drink-region{i) = E in sp.;.
Thus (B-b), (D-d) and (E-c) are still true in s,,.

Casc 9: am = R;, T;, or E;. None of the changes affects any of the pridi-
cates. o

Lemma 5: Let ¢ be an execution of Drink{B) whose schedule is drinking-well-
formed. Then in every state of e, the following are true, for all i.

(A) If do-T\i) is true, then dine-region(i) = R.
(B) If do-E(i) is true, then dine-region(i) = C.

Proof: Let e = sga;8;...a,y8m We procced by induction on m, which indexes
the states of .

(A) and (B) are obviously true of s, since it is a start state. Assuming (A)
and (B) are true of 3,,~;, we show they are true of s,,. We need only consider the
following values for ay.

Case 1: a,, = Ti(B).

39

(A) If dine-region(i) = R in S, then by code. If dine-region(i) # Rin sjm-1,
then by induction hypothesis for (A), do-T; is false in s,—1; since by code it is still
false in &,,, we are done.

(B) By the induction hypothesis, since there is no relevant change.

Case 2: ay = C;. First note that a, ... ay—|F-TCER; ends in T;, by dining-
well-formedness.

Claims about 3,1
1. dine-region(i) = T, by above note and Lemma 1(c).
2. do-1(i) = false, by Claim 1 and (A).

(A) by Claim 2 and rode, vacuous.
(B) by code.

Case §: am = R;. First note that a;...an-1|F-TCER; ends in E; by dining-
well-formedness.

Claims about 8,,_):
1. dine-region(i) = E, by above note and Lemma 1(c).
2. do-E(i) = false, by Claim 1 and (B).

(A) by code.

(B) by Claim 2 and code, vacuous.

Case {: am = Ci(B).

(A) and (B) by induction hypothesis and code.
Case 5: a,, =T,

(A) by code.

(B) By (A) and precondition, drink-region(i) = R in s,,—;. By (B), do-E(i) =
false in s’n..], and still in 3'".

Case 6: a,, = E;.

(A) By (B) and precondition, drink-region(i) = C in s,,—1. By (A), do-T(i) =
false in s,,_;, and still in s,,.

40

(B) by code. 0

Lemma 12: Suppose Dine(B) solves the dining philosophers problem. Let e be
an exccution of Drink(B) whose schedule is drinking-well-formed. The following
predicates are true in every statc of ¢, for auy i, j and b,

(A) If there is a current dem(b) message in buf(i, j), then
(a) drink-region(i) = T,
(b) dine-region(i) = C,
(c) b is in reg-bottles(t), and
(d) do-EX3) is false.

(B) There is at most one current dem(b) message in buff(i,).
(C) There is at most one non-current dem(b) message in buffi, j).

Proof: Let e = 30a13; ... @pmSm We proceed by induction on m, which indexes
the states of e.

(A) through (C) are obviously true of 3¢, since it is a start state. Assuming
(A) through (C) are true of s,,—1, we show that they are true of 3.. We consider
every possible value of a,n. By Lemma 6(a), sched(e) is dining-well-formed.

Case 1: ap, = Ti(B). Only messages in duff(i, j), for all j, are affected.

Remark: By drinking-well-formedness, a; ... dm-1|B-it TCER; ends in R;(B')
for some B', or is empty.

Claims about sy

1. drink-region(i) = R, by Remark and Lemma 1(a).

2. No current dem(d) is in bufi, ;) for any b and j, by Claim 1 and (A-a).
3. At most one non-current dem(b) is in buffii, j) for any b and j, by (C).

Claims about s,,:

4. No current dem(b) is in buffi, j) for any b and j, by Claim 2 and code.

5. At most one non-current dem(b) is in buffi,) for any b and j, by Claim 3 and
code.

(A) By Claim 4, vacuously true for buff{i,j) for all j.

(B) By Claim 4 for buff(i,5) for all j.

41

(C) By Claim 5 for buffi,) for all j.

Case 2: am = Ei(B). Only dem(b) messages in buff{i,j) and buff{j,i) are
affected, where (b,7) is in deferred(i) in su—1. Fix such a b and j.

Remark: By drinking-well-formeduess. ay ... a1 |B-TCER; ends in Ci(B).

Claims about $jp—y:

drink.region(i) = C, by Remark and Lemmu 1(a).

No current dem(b) is in duff{i, j), by Claim: 1 and (A-a).

At most one noun-current dem(b) is in buff(i,7), by (C).

bis in bottles(:), by choice of b and Lemma 3 (B-a).

If dem(b) is in bufi{j, i), then dem(b) is current, by Claim 4.
At most one dem(d) is in buff(j,), by Claim 5 and (B).

AR R

Claims about s,

7. No current dem(b) is in buff{i, j), by Claim 2 and code.

8. At most one non-current dem(b) is in bufRi,j), by Claim 3 and code.
9. At most one dem(b) is in buff{j,7), by Claim 6 2nd code.

(A) By Claim 7 for buff(i,). No rclevant change for duff(j, i).
(B) By Claim 7 for buffi,j). By Claim 9 for buffj,i).

(C) By Claim 8 for duf{i,j). By Claim 9 for buff(j, i).

—— e A

Case 3: am = deliver(sat(b),j,i). The only messages affected are dem(d) in
buff{(,J) or bufiy,).

Claims about 5,1

sat(b) is at the head of buff 7, i), by precondition.

. If dem(d) is in buff{j, 1), then it is current, by Claim 1.
. At most one dem(b) is in buff(j,7), by Claim 2 and (B).
. If dem(b) is in buff{(,j), then it is current, by Claim 1.
. At most one dem(b) is in buff(i,j), by Claim 4 and (B).

—

ot e WO

Cluims about s,,:
6. At most one dem(b) is in duff{j,7), by Claim 3 and code.

42

7. At most one dem(d) is in duff{i,), by Claim 5 and code.
(A) No relevant changes are made.
(B) By Claims 6 and 7.

(C) By Claims 6 and 7.

Case {: ay = deliver(req(b), j,i,). If the request is deferred, thereis no relevant
change. Suppose the request is satisfied, i.c., sat(b) is added to duff¢,). The only
messages affected are dem(d) in buf{i,7) or buffj,i).

Claims about sy

. reg(b) is at the head of duff;,i), by precondition.

. bis in bottles(i), by Claim 1 and Lemma 3 (C).

. If dem(}) is in duff{j, 1), then it is current, by Claim 2.

. At most one dem(b) is in buff{j,¢), by Claim 3 and (B).

. bis in B; N B;, by Claim 1 and Lemma 1(d).

. If dem(D) is in buff(i,j), then it is not current, by Claims 2 and 5 and Lemma 3
(A).

7. At most one dem(d) is in duffli,), by Claim 6 and (C).

[y

[= < BN W7~ R]

Claims about sp,:
8. At most one dem(b) is in buffj,), by Claim 4 and code.
9. At most onc dem(b) is in buffi,j), by Claim 7 and code.

(A) No relevant chiange.
(B) By Claims 8 and 9.

(C) By Claims 8 and 9.

Case 5: am = deliver(dem(D), j,1). If bis not in bottles(i) in sp—1, then there
is no relevant change. Suppose b is in bottles(i) in s,,—;. The only messages affected
are dem(b) in buff(i, 7) or buff(j,1).

Claimns about 85,
1. dem(d) is at the head of dbuffj,{), by precondition.

43

bis in bottles(i), by assumption.

If dem(bd) is in buff(j, i), then it is cwrrent, by Claim 1.

There is exactly one dem(b) in buff j, i), by Claims 1 and 3.

bis in B; N Bj, by Claim 1 and Lemua 1(d).

If dem(b) is in buff{i,j), then it is non-current, by Claim 2 and Lemma 3 (A).
There is at most one dem(d) in buffi. j), by Claim 6 and (C).

NS¢ e W

Claims about s,,:

8. There is no dem(b) in buff;,), by Claim 4 and code.

9. There is at most one dem(b) in duff(1, j), by Claim 7 and code.

10. If dem(b) is in buff{i, 7), then it is non-carrent, by Claim 6 and code (i.c., sat(b)
is added to the end of duffli, 7), if it is added at all).

(A) By Claims 8 and 10.
(B) By Claims 9 and 10.

(C) By Claims 9 and 10.

-— - — - - - mepo e —

Cuse 6: a,, = C;. First, suppose drink-region(i) # T in s,u;. Then by (A-d),
no current dem(b) message is in buffl/,j), for any b and j, in s,,—;. Thus, setting
do-E(i) to true in s, does not falsify (A-d). There is no relevant change for the
rest of the invariants.

Now suppose drink-region(i) = T in 5,1, We need only consider a dem(b)
added to some buff{i,j) in &,,. Fix such a b and j.

Remark: By dining-well-formedness, a; ... ty—1|F-TCER; ends in T;.

Claims about s,,_,:

dine-region(i) = T, by Remark and Lemma 1(¢).

. If dem(b) is in buff{i, j), then it is non-current, by Claim 1 and (A-b).

. At most one dem(b) is in buff{i,7), by Claim 2 and (C).

. bis not in bottles(i), by code and choice of b,

sat(d) is in buff(i, j), or b is in batiles(j), or sat(b) is in buff(j,i), by Claim 4 and
Lemma 3 (A).

6. drink-region(i) = T, by assumption.

7. bis in req-bottles(7), by choice of b.

8. do-E(i) is false, by Claim 1 and Lemuma § (B).

[I SRR

44

Claims about $p,:

9. The dem(bd) message added to buff{i,7) is current, by Claim 5 and code.

10. drink.region(i) = T, dine-region(i) = C, b is in rcq-boitles(i), and do-E(i) is
fulse, by Claims G, 7 and 8 and code.

11. One current dem(b) message is in buff(¢, j), by Claims 2 and 9 and code.

(A) By Claim 10.
(B) By Claim 11.

(C) No relevant change.

- -

Case 7: am = R;. The only relevant change is to dinc-region(i), affecting (A-b)
for i. By dining-well-formedness, a; ...ay~|F-TCER; ends in E;. By Lemma 1(c),
dine-region(i) = E in $m—1, 30 by (A-b) there is no current dem(b) in buff(i, 5), for
any b and j in s, —1. By code, the same is true in sm, s0 (A-b) for ¢ is vacuously
true in s,

Case 8: am = Ci(B). The only relevant change is to do-E(i), affecting (A-d)
for i. By precondition (reg-bottles(i) n subsct of bottles(i)) and (A-c), there is no
current dem(b) in buffi, j}, for any b and j. By code, the smme is true in s,,, so
(A-d) for i is vacuously true in s,,.

—

Case 9: am = Ri(B). The only change is to drink-region(i), affecting (A-a) for
i. By precondition, drink-region(i) = E in s,,—1, so by (A-a), there is no current
dem(bd) in buff(i,), for any b and j. By code, the same is true in s,,, so (A-a) for i
is vacuously true in s,,.

FR— T e e - ———

Case 10: an, = T;. The only relevant change is to dine-region(i), affecting
(A-b) for i. By precondition and Lemma 5 (A), dine-region(i) = R in $p—y, so by
{A-b), there is no current dem(b) in buff{s, j), for any b and j. By code, the same
is true in 8,,, so (A-b) for i is vacuously truc in s,,.

- - - - .-

Case 11: ay = Ei. The only chunges ave to dinc-region(7) and do-E(3), affect.
ing (A-b) and (A-d) for i. By precondition and (A-b), there is no current dem(b)
in buff{(i, j), for any b and j. By code, the smmne is true in 5y, 50 (A-b) and (A-d)
for i are vacuously true in s,,. 0

46

OFFICIAL DISTRIBUTION LIST

Director

Informazion Processzing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard

Arlingron, VA 22209

Office of Naval Research

800 Norcth Quincy Street
Arlingcon, VA 22217

Atzn: Dr. Gary Koop, Code 433

Direccor, Code 2627
Naval Research Laboratory
Wasnington, DC 20375

Defanse Technical Informacion Canter
Cameron Station
Alexandria, VA 22314

Nacional Science Foundation
Office of Computing Accivities
1800 G. Streer, N.W,
Washington, DC 20550

Actcn: Program Direccor

Dr. E.3. Royce, Code 38
Head, Reseaxrch Department
Naval Weapons Center
China Lake, CA 93555

2 copies

2 copies

6 copies

12 copies

2 copies

1 copy

